
MATH20132 Calculus of Several Variables. 2020-21

Solutions to Problems 8 Tangent Spaces & Planes

Tangent Planes to level sets.

1. For each of the following level sets find the tangent plane to the surface
at the given point p and give your answer as a level set.

i. (x, y, z)T ∈ R3 : x2 + y2 + z2 = 14 with p = (2, 1,−3)T ,

ii. (x, y, z)T ∈ R3 :

x2 + 3y2 + 2z2 = 9,

xyz = −2,

with p = (2,−1, 1)T ,

iii. (x, y, u, v) ∈ R4 :

x3 − 3yu+ u2 + 2xv = 12

xv2 + 2y2 − 3u2 − 3yv = −3.

with p = (1, 2,−1, 2)T ,

Solution Theory: From the notes the Tangent Plane to a point p on a level
set f−1 (0) is

{x : Jf(p)(x− p) = 0} .

i. With f(x) = x2 + y2 + z2 − 14 and p = (2, 1,−3)T the Jacobian matrix is
Jf(p) = (4, 2,−6) . This is non-zero and so of full-rank and thus the Tangent
Plane is those x ∈ R3 satisfying

(4, 2,−6)

 x− 2
y − 1
z + 3

 = 0,

that is 4x+ 2y − 6z − 28 = 0.
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Figure for Part i showing the sphere with the Tangent Plane z = (4x+ 2y − 28)/6 :

p

x

y

z

ii. The Jacobian of the level set at p is

Jf(p) =

(
2x 6y 4z
yz xz xy

)
x=p

=

(
4 −6 4
−1 2 −2

)
.

The rows are not linear multiples of each other so Jf(p) is of full rank. Hence
the Tangent Plane is those x ∈ R3 satisfying

(
4 −6 4
−1 2 −2

) x− 2
y + 1
z − 1

 = 0,

that is

2x− 9− 3y + 2z = 0,

−x+ 6 + 2y − 2z = 0.

iii. The Jacobian of the level set at p is(
3x2 + 2v −3u −3y + 2u 2x

v2 4y − 3v −6u 2xv − 3y

)
x=p

=

(
7 3 −8 2
4 2 6 −2

)
.

The last two columns are linearly independent so Jf(p) is of full rank.
Hence the Tangent Plane is those x ∈ R4 satisfying

(
7 3 −8 2
4 2 6 −2

)
x− 1
y − 2
u+ 1
v − 2

 = 0,
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which is the level set

7x+ 3y − 8u+ 2v = 25,

4x+ 2y + 6u− 2v = −2.

2. Return to your answers of Question 1 and write them as graphs instead
of level sets. Then give a basis for the Tangent Space.

Solution i. The Tangent Plane was previously given, in Question 1, as those
x ∈ R3 satisfying 4x+ 2y − 6z − 28 = 0. This can be written as the graph

 x

y

(4x+ 2y − 28) /6

 :

(
x

y

)
∈ R2

 .

Since x

y

(4x+ 2y − 28) /6

 =

 0

0

−28/6

+ x

 1

0

2/3

+ y

 0

1

1/3

 ,

a basis for the Tangent Space will be (1, 0, 2/3)T and (0, 1, 1/3)T which we
could re-scale as (3, 0, 2)T and (0, 3, 1)T .

ii. The Tangent Plane was previously given as those x ∈ R3 satisfying

2x− 9− 3y + 2z = 0,

−x+ 6 + 2y − 2z = 0.

These simultaneous equations can be solved for y and z as functions of x,
giving y = x− 3 and z = x/2. Thus the plane is given by the graph

 x

x− 3

x/2

 : x ∈ R

 .

This is the graph of the vector valued function

φ (x) =

(
x− 3

x/2

)
.

Though called a plane it is geometrically a line.
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Writing  x
x− 3
x/2

 = x

 1
1

1/2

+

 0
−3

0

 ,

we see that (2, 2, 1)T is a basis vector for the Tangent Space.

iii The Tangent Plane was previously given as those x ∈ R4 satisfying

7x+ 3y − 8u+ 2v = 25

4x+ 2y + 6u− 2v = −2.

Equivalent to solving for u and v is to start with the augmented matrix(
7 3 −8 2
4 2 6 −2

∣∣∣∣ 25
−2

)
.

Then apply row operations

→
r1→r1+r2

(
11 5 −2 0
4 2 6 −2

∣∣∣∣ 23
−2

)
→

r2→r2+3r1

(
11 5 −2 0
37 17 0 −2

∣∣∣∣ 23
67

)
..

We could continue to get the identity matrix in the columns corresponding
to u and v, but instead we translate the matrix back into equations

2u = 11x+ 5y − 23

2v = 37x+ 17y − 67.

Thus the level set is the graph of the function φ : R2 → R2,

φ(x) =

(
(11x+ 5y − 23)/2

(37x+ 17y − 67)/2

)
,

where x = (x, y)T ∈ R2. Looking at the columns in
(
xT , φ(x)T

)T
we find

that the vectors (2, 0, 11, 37)T and (0, 2, 5, 17)T span the Tangent Space.
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Tangent Spaces for Image sets.

3. In each case, find parametric equations for the Tangent Plane passing
through the point F(q) on the parametric surfaces given by the following
functions.

i. F
(
(x, y)T

)
= (x2 + y2, xy, 2x− 3y)

T
, at q = (1, 2)T ,

ii. F
(
(x, y)T

)
= (xy2, x2 + y, x3 − y2, y2)T , at q = (−1, 2)T ,

iii. F(t) = (cos t, sin t, t)T at q = 3π.

Solution From the Theory: A result from the notes states that if JF(q) is
of full rank then the tangent plane to the image set of a function is the image
set of the Best Affine Approximation to the function.

i. The Jacobian matrix is

JF(x) =

 2x 2y
y x

2 −3

 so JF(q) =

 2 4
2 1
2 −3

 .

The Jacobian matrix JF(q) is of full rank so the Tangent Plane is the
image of the Best Affine Approximation:

F(q) + JF(q)(x− q) =

 5
2
−4

+

 2 4
2 1
2 −3

( x− 1
y − 2

)

=

 2x+ 4y − 5
2x+ y − 2

2x− 3y

 ,

for x ∈ R2.

Note that the last coordinate function for the Tangent plane is identical to
the last one in the definition of F. This should be no surprise since 2x− 3y
is linear.

ii. The Jacobian matrix at q is

JF(q) =


y2 2xy

2x 1

3x2 −2y

0 2y


x=q

=


4 −4

−2 1

3 −4

0 4

 .
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It is quickly seen from the last row that the two columns are linearly
independent (make sure you understand this) and so JF(q) is of full-rank.
Then the Tangent Plane is the image of the Best Affine Approximation:

F(q) + JF(q)(x− q) =


−4

3
−5

4

+


4 −4
−2 1

3 −4
0 4

( x+ 1
y − 2

)

=


4x− 4y + 8

−2x+ y − 1

3x− 4y + 6

4y − 4

 ,

with x ∈ R2.

iii. The Tangent Plane is the image of the Best Affine Approximation:

F(q) + JF(q)(t− q) =

 −1
0

3π

+

 0
−2

1

 (t− 3π)

=

 −1
−2t+ 6π

t

 .

Though called a tangent plane this is geometrically a line.

Figure for Question 11iii:

p

x
y

z

4. Return to Question 7 on Sheet 6. You were asked to show, by using the
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Implicit Function Theorem, that the following equations

x2 + y2 + 2uv = 4 (1)

x3 + y3 + u3 − v3 = 0,

determine u and v as functions of x and y for (x, y)T in an open subset of R2

containing the point q = (−1, 1)T ∈ R2. The implicit function theorem is an
existence result, it does not say what u and v are as functions of x and y.
Nonetheless it is possible to find their partial derivatives and you were asked
to do this. The answer was

∂u

∂x
(q) = 0,

∂v

∂x
(q) = 1,

∂u

∂y
(q) = −1 and

∂v

∂y
(q) = 0.

Use these partial derivatives to find a basis for the tangent space at p =
(−1, 1, 1, 1)T .

Solution The Implicit Function Theorem says that, for (x, y)T restricted to
some set V containing q, the points in the level set lie in the image set of

F (x) =


x
y

u(x, y)
v(x, y)

 ,

where x = (x, y)T ∈ V . Yet the Tangent space at a point p ∈ S on a surface
given parametrically as the image of F is spanned by the columns of JF(q).
In our case the Jacobian at q is

1 0

0 1

∂u(q)/∂x ∂u (q)/∂y

∂v(q)/∂x ∂v (q)/∂y

 =


1 0
0 1
0 −1
1 0

 .

Hence the Tangent Space is spanned by (1, 0, 0, 1)T and (0, 1,−1, 0)T .

To double check The Jacobian matrix of the system at p is

Jf(p) =

(
2x 2y 2v 2u

3x2 3y2 3u2 −3v2

)
x=p

=

(
−2 2 2 2

3 3 3 −3

)
.

The rows of Jf(p) span Tp (S)⊥ so we need vectors orthogonal to the rows

of Jf(p). It is easily checked that both (1, 0, 0, 1)T and (0, 1,−1, 0)T are
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orthogonal to all rows of Jf(p). In addition they are linearly independent
which means they form a basis for Tp (S).

5. Let S (u) = (cosu sin v, sinu sin v, cos v)T , where u = (u, v)T , with 0 ≤
v ≤ π, 0 ≤ u ≤ 2π. This is the surface of the unit ball in R3 in standard
spherical coordinates.

i. Show that the tangent space of S at q = (π, π/2)T is TpS = Span(e2,
e3), where p = S (q).

ii. Determine also the tangent space at q = (0, π/4)T .

iii. a. Let w = (1, 2,−1)T/
√

6. Show that w ∈ TpS where p = S
(
(0, π/4)T

)
.

b. (Tricky) The definition of TpS is that w ∈ TpS only if there exists
a curve a : I → S such that α (0) = p and α′ (0) = w. Find a α
in this case.

Hint In the notes we prove that Tp (S) = {JF(q)x} when S =
ImF. Look at that proof which constructs a curve within the
surface.

Solution For a parametrically defined set the tangent space is spanned by
the columns of the Jacobian matrix. In this case

JS (u) =

 − sinu sin v cosu cos v
cosu sin v sinu cos v

0 − sin v

 .

i. With q = (π, π/2)T ,

JS(q) =

 0 0

1 0

0 −1

 .

The columns are e2 and −e3 but Span(e2, −e3) = Span(e2, e3) so result
follows.
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Figure for Part i:

p

x

y

z

ii. With q = (0, π/4)T ,

JS(q) =

 0 1√
2

1√
2

0

0 − 1√
2

 .

So we can choose (1, 0,−1)T and (0, 1, 0)T as a basis for Tp (S).

Figure for Part ii:

p

x y

z

iii. a. The first part follows since

w =
1√
6

 1
2
−1

 =
1√
6

 1
0
−1

+
2√
6

 0
1
0

 ∈ Tp (S) ,
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It might not look obvious from the following figure that w lies in the
plane spanned by v1 and v2:

p

x
y

z

But it we change our viewpoint to sideways on to the plane it is more be-
lievable.

p

x y

z

b. With v ∈ R2 to be chosen our curve will be

α : R→ R3, t 7→ S(q + tv) ,

for −1 ≤ t ≤ 1, say.

By its definition the image of α lies in the surface of the sphere and
α(0) = S(q) = p as required. The function α is a composition of S and

f(t) = q + tv so, to find the tangent vector α′(t) , we need apply the Chain
Rule.

For a vector-valued function of one variable the derivative equals the
Jacobian matrix, so

α′v (t) = Jα(t) = J (S ◦ f) (t) = JS (f(t)) Jf(t) = JS (f(t)) f ′ (t) = JS (f(t))v.
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Putting t = 0 gives

α′ (0) = JS(f(0))v = JS(q)v.

We require α′ (0) = w so choose v = (u, v)T such that JS(q)v = w, i.e.

1√
2

 0 1

1 0

0 −1

( u
v

)
=

1√
6

 1

2

−1

 .

Solve this to find v =
(
2/
√

3, 1/
√

3
)T

. Thus the required curve is

t 7→ S

((
0

π/4

)
+

t√
3

(
2

1

))
= S

((
2t/
√

3

π/4 + t/
√

3

))
.

That is

t 7→

 cos
(
2t/
√

3
)

sin
(
π/4 + t/

√
3
)

sin
(
2t/
√

3
)

sin
(
π/4 + t/

√
3
)

cos
(
π/4 + t/

√
3
)

 .

Figure for Question 14 iiib.

p

w
x

y

z
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Additional Questions

6 Assume f : U ⊆ Rn → Rm is a C1-function on U . Assume that at a ∈ U
the Jacobian matrix Jf(a) is of full-rank. Prove that there exists an open
set A : a ∈ A ⊆ U such that Jf(x) is of full-rank for all x ∈ A.

Solution Assume n ≥ m. Then Jf(a) has m linearly independent rows.
Consider the determinant of the m × m matrix consisting of these rows in
Jf(x). That the rows are linearly independent when x = a means the deter-
minant is non-zero when x = a.

Yet the determinant is a sum of products of the elements of Jf(x), i.e.
partial derivatives ∂f (x) /∂xi. That is, it is a polynomial in these partial
derivatives. Yet we are told that f is C1, i.e. it’s partial derivatives are
continuous. Hence the polynomial is continuous.

So we have a continuous function, non-zero at x = a. By the properties
of continuous functions there exists an open set A : a ∈ A ⊆ U such that the
polynomial is non-zero in A. That is, the determinant of m rows in Jf(x)
is non-zero for all x ∈ A. In turn this means that Jf(x) has m linearly
independent rows, that is it is of full-rank, for all x ∈ A.

If m < n simply replace row by column in the above argument.

7 Let C ⊆ R3 be the level set

x2z3 − x3z2 = 0,

x2y + xy3 = 2.

Show that in some neighbourhood of p = (1, 1, 1)T , C is a curve which
can be parametrized by g (x) = (x, g1(x) , g2(x)) for differentiable functions
g1 and g2.

Find a parametrization of the Tangent Line to C at p.

Solution The Jacobian matrix of the system at p is(
2xz3 − 3x2z2 0 3x2z2 − 2x3z

2xy + y3 x2 + 3xy2 0

)
x=p

=

(
−1 0 1
3 4 0

)
.

The last two columns are linearly independent and so the system can
be solved in a neighbourhood of p with the last two variables, y and z, as
functions of the first variable, x. In the question g1(x) = y(x) and g2(x) =
z(x).
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The Tangent Line is a special case (only one free parameter) of the Tan-
gent Plane. So the Tangent line is the set of x ∈ R3 such that

(
−1 0 1
3 4 0

) x− 1
y − 1
z − 1

 = 0, that is
−x+ z = 0

3x− 7 + 4y = 0
.

Parametrically this is g(x) = (x, (7− 3x) /4, x)T , x ∈ R.

Alternative solution If you fail to remember how to find the Tangent Plane
for a level set remember instead that the velocity vector at p = (1, 1, 1)T is
v = (1, g′1(1) , g′2(1))T . Though the Implicit Function Theorem justifies the
existence of g1 and g2 it does not say what they are. We can, nonetheless,
calculate their derivatives. Starting from

x2g2(x)3 − x3g2(x)2 = 0,

x2g1(x) + xg1(x)3 = 2.

Take derivatives

2xg2(x)3 + 3x2g2(x)2 g′2(x)− 3x2g2(x)2 − 2x3g2(x) g′2(x) = 0,

2xg1(x) + x2g′1(x) + g1(x)3 + 3xg1(x)2 g′1(x) = 0.

Choose x = 1, when g1(1) = 1 and g2(1) = 1. Thus

2 + 3g′2(x)− 3− 2g′2(x) = 0,

2 + g′1(x) + 1 + 3g′1(x) = 0.

So g′1(1) = −3/4 and g′2(1) = 1 and the velocity vector is v = (1,−3/4, 1)T .
The Tangent line is p + sv, i.e.

(1 + s, 1− 3s/4, 1 + s)T

where s ∈ R. The two parametrizations are the same under the mapping
1 + s↔ x.

8 Find the Tangent Plane to the surface

x3 − y3 + xv + uv = 0,

xu2 + yv2 = 0.
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where (x, y, u, v)T ∈ R4, at p = (−1, 1,−1,−1)T . Give your answer as a level
set, and also as a graph. Find a basis for the Tangent Space to the surface
at p.

Solution The Jacobian of the level set at p is(
3x2 + v −3y2 v x+ u

u2 v2 2xu 2yv

)
x=p

=

(
2 −3 −1 −2
1 1 2 −2

)
.

The last two columns are linearly independent so Jf(p) is of full rank.
Hence the tangent plane is those x ∈ R4 satisfying

(
2 −3 −1 −2
1 1 2 −2

)
x+ 1
y − 1
u+ 1
v + 1

 = 0,

which is the level set

2x− 3y − u− 2v = −2,

x+ y + 2u− 2v = 0.

To find the graph solve for u and v. For example, subtracting the equa-
tions gives

−x+ 4y + 3u = 2.

Alternatively, multiply the first equation by 2 and add the two

5x− 5y − 6v = −4.

Then the Tangent Plane is the graph of the vector-valued function

φ (x) =

(
(x− 4y + 2)/3

(5x− 5y + 4)/6

)
Then from the columns of (

x
φ(x)

)
we find a basis of (6, 0, 2, 5)T and (0, 6,−8,−5)T for the Tangent Space.

Check In the notes it was shown that given a level set {x : F(x) = 0} then
the Tangent Space at p is the set of x such that JF(p)x = 0. It was noted
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that the rows of JF(p) are a basis for Tp (S)⊥, the orthogonal complement
of Tp (S). So a basis for Tp (S) will all be orthogonal to the rows of JF(p).

Are (6, 0, 2, 5)T and (0, 6,−8,−5)T orthogonal to the rows of Jf(p)? I leave
it to the student to check, but it does show that we need never get a question
such as this wrong.

9 Find parametric equations for the tangent plane passing through the given
point F(q) on the parametric surfaces given by

i. F
(
(x, y)T

)
= (x2 + y2, xy, 2x− 3y)

T
at q = (1, 1)T .

ii. F
(
(s, t)T

)
= (t cos s, t sin s, t)T , q = (π/2, 2)T ,

iii. F
(
(s, t)T

)
= (t2 cos s, t2, t2 sin s), q = (0, 1)T ,

Solution i. With q = (1, 1)T , the Best Affine Approximation (and thus the
Tangent Plane) is the image set of

F(q) + JF(q)(x− q) =

 2
1
−1

+

 2 2
1 1
2 −3

( x− 1
y − 1

)

=

 2x+ 2y − 2

x+ y − 1

2x− 3y

 ,

for x ∈ R2.

ii. the Tangent Plane is {x ∈ R3 : z = y} .

iii. the Tangent Plane is {x ∈ R3 : x = y}.

10 Find parametric equation for the Tangent Plane passing through the
point F(q) on the parametric surface given by F(x) = (yz, xz, xy, xyz)T , for
x = (x, y, z)T at q = (1,−1, 2)T .

Solution The Jacobian matrix is

JF(x) =


0 z y
z 0 x
y x 0
yz xz xy

 so JF(q) =


0 2 −1
2 0 1
−1 1 0
−2 2 −1

 .
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The Jacobian matrix is of full rank so the Tangent Plane is the image of
Best Affine Approximation;

F(q) + JF(q)(x− q) =


−2

2
−1
−2

+


0 2 −1
2 0 1
−1 1 0
−2 2 −1


 x− 1

y + 1
z − 2



=


2y − z + 2
2x+ z − 2
−x+ y + 1

−2x+ 2y − z + 4

 .

11. Find the tangent planes at the points p1 = (1/
√

2, 1/4, 1/4) and p2 =
(
√

3/2, 0, 1/4) on the ellipsoid x2 + 4y2 + 4z2 = 1.

Find the line of intersection of these two planes.

Solution Let f(x) = x2+4y2+4z2−1 so the ellipsoid is the level set f−1 (0).
The Jacobian matrix is Jf(x) = (2x, 8y, 8z). The Tangent Plane to f−1(0)
at p1 is

0 = Jf(p1) (x− p1) = 2
1√
2

(
x− 1√

2

)
+ 8

1

4

(
y − 1

4

)
+ 8

1

4

(
z − 1

4

)
=
√

2x+ 2y + 2z − 2.

That is
√

2x+ 2y + 2z = 2.

Similarly the plane at p2 is
√

3x+ 2z = 2.

Solving for y and z and the line of intersection can be given parametrically
as 

(
t,

(
√

3−
√

2)

2
t, 1− t

√
3

2

)T

: t ∈ R

 .

12. i. Find the Tangent Plane to the surface z = xey at the point p =
(1, 0, 1)T on the surface.

ii. The surfaces x2 + y2 − z2 = 1 and x + y + z = 5 intersect in a curve Γ.
Find the equation in parametric form of the tangent line to Γ at the point
(1, 2, 2)T .
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Solution i. Let f(x) = xey − z, where x = (x, y, z)T , so the surface is the
level set f−1(0). The Jacobian matrix is Jf(x) = (ey, xey,−1) so Jf(p) =
(1, 1,−1). The Tangent plane is Jf(p)(x− p) = 0, that is x ∈ R3 such that

0 = (1, 1,−1)

 x− 1
y − 0
z − 1

 = x+ y − z,

i.e. x+ y − z = 0.

Just in case you cannot see the Tangent Plane, here shown under the
surface:

p xy

z
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I’ve now changed my viewpoint around by 90◦ and up a little:

p

x

y

z

(b) Let F(x) = (x2 + y2 − z2 − 1, x + y + z − 5)T . Then Γ is the level set
F−1 (0). The Jacobian matrix is

JF(x) =

(
2x 2y −2z
1 1 1

)
so JF(p) =

(
2 4 −4
1 1 1

)
,

where p = (1, 2, 2)T . The Tangent plane to the level set at p is

{
x ∈ R3 : JF(p)(x− p) = 0

}
=

x ∈ R3 :

(
2 4 −4
1 1 1

) x− 1
y − 2
z − 2

 = 0

 .

Thus we get the Tangent plane (here a line) as a level set

x+ 2y − 2z = 1

x+ y + z = 5.

To give the answer in parametric form solve for y and z. Perhaps 2×
second equation add to first so 3x + 4y = 11, i.e. y = (11− 3x) /4. In the
second equation for

z = 5− x− y = (20− 4x− 11 + 3x) /4 = (9− x) /4.

Hence a parametric form for the Tangent line is{(
x,

11− 3x

4
,

9− x
4

)T

: x ∈ R

}
.

You might not like fractions, but a change of variables, x = 1 + 4t, gives{
(1 + 4t, 2− 3t, 2− t)T : t ∈ R

}
.
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Hopefully you can see in the following figure the blue line of intersection
of the plane x+ y+ z = 5 with the hyperboloid x2 + y2− z2 = 1, along with
the red tangent line:

13. i. Consider the surface S = {(x, y, z)T ∈ R3 : xy = z}. Let p =
(A,B,C)T be a generic point of S. Find the Tangent Plane at p.

ii. Show that the intersection of the Tangent Plane with S consists of two
straight lines.

Solution i. If f(x) = xy − z then S = f−1(0). The Tangent plane for
a level set at p is the set of x such that Jf(p)(x− p) = 0. In this case
Jf(p) = (y, x,−1)x=p = (B,A,−1). So the plane is the x ∈ R3 such that

0 = Jf(p)(x− p) = (B, A, −1)

 x− A
y −B
z − C

 = Bx+ Ay − z − 2AB + C.

That is
Bx+ Ay − z = 2AB − C = AB,

since AB = C because (A,B,C)T ∈ S.

ii. The intersection of the Tangent plane with S consists of (x, y, z)T : Bx+
Ay−z = AB and xy = z. Combine as Bx+Ay−xy = AB, which rearranges
as (x− A) (y −B) = 0. Thus we have either x = A or y = B.

If x = A then the equation of the surface becomes Ay = z and we get the

straight line
{

(A, t, At)T : t ∈ R
}

.

If y = B we get the straight line
{

(t, B,Bt)T : t ∈ R
}

.
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Does this help as an illustration?
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