MATH20132 Calculus of Several Variables.

Solutions to Problems 8 Tangent Spaces \& Planes

Tangent Planes to level sets.

1. For each of the following level sets find the tangent plane to the surface at the given point \mathbf{p} and give your answer as a level set.
i. $(x, y, z)^{T} \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=14$ with $\mathbf{p}=(2,1,-3)^{T}$,
ii. $(x, y, z)^{T} \in \mathbb{R}^{3}$:

$$
\begin{aligned}
x^{2}+3 y^{2}+2 z^{2} & =9 \\
x y z & =-2
\end{aligned}
$$

with $\mathbf{p}=(2,-1,1)^{T}$,
iii. $(x, y, u, v) \in \mathbb{R}^{4}$:

$$
\begin{aligned}
x^{3}-3 y u+u^{2}+2 x v & =12 \\
x v^{2}+2 y^{2}-3 u^{2}-3 y v & =-3
\end{aligned}
$$

with $\mathbf{p}=(1,2,-1,2)^{T}$,

Solution Theory: From the notes the Tangent Plane to a point p on a level set $\mathbf{f}^{-1}(\mathbf{0})$ is

$$
\{\mathbf{x}: J \mathbf{f}(\mathbf{p})(\mathbf{x}-\mathbf{p})=\mathbf{0}\}
$$

i. With $f(\mathbf{x})=x^{2}+y^{2}+z^{2}-14$ and $\mathbf{p}=(2,1,-3)^{T}$ the Jacobian matrix is $J f(\mathbf{p})=(4,2,-6)$. This is non-zero and so of full-rank and thus the Tangent Plane is those $\mathbf{x} \in \mathbb{R}^{3}$ satisfying

$$
(4,2,-6)\left(\begin{array}{l}
x-2 \\
y-1 \\
z+3
\end{array}\right)=\mathbf{0}
$$

that is $4 x+2 y-6 z-28=0$.

Figure for Part i showing the sphere with the Tangent Plane $z=(4 x+2 y-28) / 6$:

ii. The Jacobian of the level set at \mathbf{p} is

$$
J \mathbf{f}(\mathbf{p})=\left(\begin{array}{lll}
2 x & 6 y & 4 z \\
y z & x z & x y
\end{array}\right)_{\mathbf{x}=\mathbf{p}}=\left(\begin{array}{rrr}
4 & -6 & 4 \\
-1 & 2 & -2
\end{array}\right) .
$$

The rows are not linear multiples of each other so $J \mathbf{f}(\mathbf{p})$ is of full rank. Hence the Tangent Plane is those $\mathbf{x} \in \mathbb{R}^{3}$ satisfying

$$
\left(\begin{array}{rrr}
4 & -6 & 4 \\
-1 & 2 & -2
\end{array}\right)\left(\begin{array}{l}
x-2 \\
y+1 \\
z-1
\end{array}\right)=\mathbf{0}
$$

that is

$$
\begin{array}{r}
2 x-9-3 y+2 z=0 \\
-x+6+2 y-2 z=0
\end{array}
$$

iii. The Jacobian of the level set at \mathbf{p} is

$$
\left(\begin{array}{cccc}
3 x^{2}+2 v & -3 u & -3 y+2 u & 2 x \\
v^{2} & 4 y-3 v & -6 u & 2 x v-3 y
\end{array}\right)_{\mathbf{x}=\mathbf{p}}=\left(\begin{array}{rrrr}
7 & 3 & -8 & 2 \\
4 & 2 & 6 & -2
\end{array}\right) .
$$

The last two columns are linearly independent so $J \mathbf{f}(\mathbf{p})$ is of full rank. Hence the Tangent Plane is those $\mathbf{x} \in \mathbb{R}^{4}$ satisfying

$$
\left(\begin{array}{rrrr}
7 & 3 & -8 & 2 \\
4 & 2 & 6 & -2
\end{array}\right)\left(\begin{array}{l}
x-1 \\
y-2 \\
u+1 \\
v-2
\end{array}\right)=\mathbf{0}
$$

which is the level set

$$
\begin{aligned}
& 7 x+3 y-8 u+2 v=25 \\
& 4 x+2 y+6 u-2 v=-2
\end{aligned}
$$

2. Return to your answers of Question 1 and write them as graphs instead of level sets. Then give a basis for the Tangent Space.

Solution i. The Tangent Plane was previously given, in Question 1, as those $\mathbf{x} \in \mathbb{R}^{3}$ satisfying $4 x+2 y-6 z-28=0$. This can be written as the graph

$$
\left\{\left(\begin{array}{c}
x \\
y \\
(4 x+2 y-28) / 6
\end{array}\right):\binom{x}{y} \in \mathbb{R}^{2}\right\} .
$$

Since

$$
\left(\begin{array}{c}
x \\
y \\
(4 x+2 y-28) / 6
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
-28 / 6
\end{array}\right)+x\left(\begin{array}{c}
1 \\
0 \\
2 / 3
\end{array}\right)+y\left(\begin{array}{c}
0 \\
1 \\
1 / 3
\end{array}\right)
$$

a basis for the Tangent Space will be $(1,0,2 / 3)^{T}$ and $(0,1,1 / 3)^{T}$ which we could re-scale as $(3,0,2)^{T}$ and $(0,3,1)^{T}$.
ii. The Tangent Plane was previously given as those $\mathbf{x} \in \mathbb{R}^{3}$ satisfying

$$
\begin{array}{r}
2 x-9-3 y+2 z=0 \\
-x+6+2 y-2 z=0 .
\end{array}
$$

These simultaneous equations can be solved for y and z as functions of x, giving $y=x-3$ and $z=x / 2$. Thus the plane is given by the graph

$$
\left\{\left(\begin{array}{c}
x \\
x-3 \\
x / 2
\end{array}\right): x \in \mathbb{R}\right\} .
$$

This is the graph of the vector valued function

$$
\phi(x)=\binom{x-3}{x / 2} .
$$

Though called a plane it is geometrically a line.

Writing

$$
\left(\begin{array}{c}
x \\
x-3 \\
x / 2
\end{array}\right)=x\left(\begin{array}{c}
1 \\
1 \\
1 / 2
\end{array}\right)+\left(\begin{array}{r}
0 \\
-3 \\
0
\end{array}\right)
$$

we see that $(2,2,1)^{T}$ is a basis vector for the Tangent Space.
iii The Tangent Plane was previously given as those $\mathbf{x} \in \mathbb{R}^{4}$ satisfying

$$
\begin{aligned}
& 7 x+3 y-8 u+2 v=25 \\
& 4 x+2 y+6 u-2 v=-2 .
\end{aligned}
$$

Equivalent to solving for u and v is to start with the augmented matrix

$$
\left(\begin{array}{rrrr|r}
7 & 3 & -8 & 2 & 25 \\
4 & 2 & 6 & -2 & -2
\end{array}\right) .
$$

Then apply row operations

$$
\underset{r_{1} \rightarrow r_{1}+r_{2}}{\vec{~}}\left(\begin{array}{rrrr|r}
11 & 5 & -2 & 0 & 23 \\
4 & 2 & 6 & -2 & -2
\end{array}\right) \underset{r_{2} \rightarrow r_{2}+3 r_{1}}{\rightarrow}\left(\begin{array}{rrrr|r}
11 & 5 & -2 & 0 & 23 \\
37 & 17 & 0 & -2 & 67
\end{array}\right) . .
$$

We could continue to get the identity matrix in the columns corresponding to u and v, but instead we translate the matrix back into equations

$$
\begin{aligned}
2 u & =11 x+5 y-23 \\
2 v & =37 x+17 y-67
\end{aligned}
$$

Thus the level set is the graph of the function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
\phi(\mathbf{x})=\binom{(11 x+5 y-23) / 2}{(37 x+17 y-67) / 2}
$$

where $\mathbf{x}=(x, y)^{T} \in \mathbb{R}^{2}$. Looking at the columns in $\left(\mathbf{x}^{T}, \boldsymbol{\phi}(\mathbf{x})^{T}\right)^{T}$ we find that the vectors $(2,0,11,37)^{T}$ and $(0,2,5,17)^{T}$ span the Tangent Space.

Tangent Spaces for Image sets.

3. In each case, find parametric equations for the Tangent Plane passing through the point $\mathbf{F}(\mathbf{q})$ on the parametric surfaces given by the following functions.
i. $\mathbf{F}\left((x, y)^{T}\right)=\left(x^{2}+y^{2}, x y, 2 x-3 y\right)^{T}, \quad$ at $\mathbf{q}=(1,2)^{T}$,
ii. $\mathbf{F}\left((x, y)^{T}\right)=\left(x y^{2}, x^{2}+y, x^{3}-y^{2}, y^{2}\right)^{T}, \quad$ at $\mathbf{q}=(-1,2)^{T}$,
iii. $\mathbf{F}(t)=(\cos t, \sin t, t)^{T}$ at $q=3 \pi$.

Solution From the Theory: A result from the notes states that if $J \mathbf{F}(\mathbf{q})$ is of full rank then the tangent plane to the image set of a function is the image set of the Best Affine Approximation to the function.
i. The Jacobian matrix is

$$
J \mathbf{F}(\mathbf{x})=\left(\begin{array}{rr}
2 x & 2 y \\
y & x \\
2 & -3
\end{array}\right) \quad \text { so } \quad J \mathbf{F}(\mathbf{q})=\left(\begin{array}{rr}
2 & 4 \\
2 & 1 \\
2 & -3
\end{array}\right) .
$$

The Jacobian matrix $J \mathbf{F}(\mathbf{q})$ is of full rank so the Tangent Plane is the image of the Best Affine Approximation:

$$
\begin{aligned}
\mathbf{F}(\mathbf{q})+J \mathbf{F}(\mathbf{q})(\mathbf{x}-\mathbf{q}) & =\left(\begin{array}{r}
5 \\
2 \\
-4
\end{array}\right)+\left(\begin{array}{rr}
2 & 4 \\
2 & 1 \\
2 & -3
\end{array}\right)\binom{x-1}{y-2} \\
& =\left(\begin{array}{c}
2 x+4 y-5 \\
2 x+y-2 \\
2 x-3 y
\end{array}\right),
\end{aligned}
$$

for $\mathbf{x} \in \mathbb{R}^{2}$.
Note that the last coordinate function for the Tangent plane is identical to the last one in the definition of \mathbf{F}. This should be no surprise since $2 x-3 y$ is linear.
ii. The Jacobian matrix at \mathbf{q} is

$$
J \mathbf{F}(\mathbf{q})=\left(\begin{array}{cc}
y^{2} & 2 x y \\
2 x & 1 \\
3 x^{2} & -2 y \\
0 & 2 y
\end{array}\right)_{\mathbf{x}=\mathbf{q}}=\left(\begin{array}{rr}
4 & -4 \\
-2 & 1 \\
3 & -4 \\
0 & 4
\end{array}\right) .
$$

It is quickly seen from the last row that the two columns are linearly independent (make sure you understand this) and so $J \mathbf{F}(\mathbf{q})$ is of full-rank. Then the Tangent Plane is the image of the Best Affine Approximation:

$$
\begin{aligned}
\mathbf{F}(\mathbf{q})+J \mathbf{F}(\mathbf{q})(\mathbf{x}-\mathbf{q}) & =\left(\begin{array}{r}
-4 \\
3 \\
-5 \\
4
\end{array}\right)+\left(\begin{array}{rr}
4 & -4 \\
-2 & 1 \\
3 & -4 \\
0 & 4
\end{array}\right)\binom{x+1}{y-2} \\
& =\left(\begin{array}{c}
4 x-4 y+8 \\
-2 x+y-1 \\
3 x-4 y+6 \\
4 y-4
\end{array}\right)
\end{aligned}
$$

with $\mathbf{x} \in \mathbb{R}^{2}$.
iii. The Tangent Plane is the image of the Best Affine Approximation:

$$
\begin{aligned}
\mathbf{F}(q)+J \mathbf{F}(q)(t-q) & =\left(\begin{array}{c}
-1 \\
0 \\
3 \pi
\end{array}\right)+\left(\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right)(t-3 \pi) \\
& =\left(\begin{array}{c}
-1 \\
-2 t+6 \pi \\
t
\end{array}\right)
\end{aligned}
$$

Though called a tangent plane this is geometrically a line.
Figure for Question 11iii:

4. Return to Question 7 on Sheet 6 . You were asked to show, by using the

Implicit Function Theorem, that the following equations

$$
\begin{align*}
x^{2}+y^{2}+2 u v & =4 \tag{1}\\
x^{3}+y^{3}+u^{3}-v^{3} & =0,
\end{align*}
$$

determine u and v as functions of x and y for $(x, y)^{T}$ in an open subset of \mathbb{R}^{2} containing the point $\mathbf{q}=(-1,1)^{T} \in \mathbb{R}^{2}$. The implicit function theorem is an existence result, it does not say what u and v are as functions of x and y. Nonetheless it is possible to find their partial derivatives and you were asked to do this. The answer was

$$
\frac{\partial u}{\partial x}(\mathbf{q})=0, \frac{\partial v}{\partial x}(\mathbf{q})=1, \frac{\partial u}{\partial y}(\mathbf{q})=-1 \quad \text { and } \quad \frac{\partial v}{\partial y}(\mathbf{q})=0
$$

Use these partial derivatives to find a basis for the tangent space at $\mathbf{p}=$ $(-1,1,1,1)^{T}$.
Solution The Implicit Function Theorem says that, for $(x, y)^{T}$ restricted to some set V containing \mathbf{q}, the points in the level set lie in the image set of

$$
\mathbf{F}(\mathbf{x})=\left(\begin{array}{c}
x \\
y \\
u(x, y) \\
v(x, y)
\end{array}\right)
$$

where $\mathbf{x}=(x, y)^{T} \in V$. Yet the Tangent space at a point $\mathbf{p} \in S$ on a surface given parametrically as the image of \mathbf{F} is spanned by the columns of $J \mathbf{F}(\mathbf{q})$. In our case the Jacobian at \mathbf{q} is

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\partial u(\mathbf{q}) / \partial x & \partial u(\mathbf{q}) / \partial y \\
\partial v(\mathbf{q}) / \partial x & \partial v(\mathbf{q}) / \partial y
\end{array}\right)=\left(\begin{array}{rr}
1 & 0 \\
0 & 1 \\
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Hence the Tangent Space is spanned by $(1,0,0,1)^{T}$ and $(0,1,-1,0)^{T}$.
To double check The Jacobian matrix of the system at \mathbf{p} is

$$
J \mathbf{f}(\mathbf{p})=\left(\begin{array}{llll}
2 x & 2 y & 2 v & 2 u \\
3 x^{2} & 3 y^{2} & 3 u^{2} & -3 v^{2}
\end{array}\right)_{\mathbf{x}=\mathbf{p}}=\left(\begin{array}{rrrr}
-2 & 2 & 2 & 2 \\
3 & 3 & 3 & -3
\end{array}\right) .
$$

The rows of $J \mathbf{f}(\mathbf{p})$ span $T_{\mathbf{p}}(S)^{\perp}$ so we need vectors orthogonal to the rows of $J \mathbf{f}(\mathbf{p})$. It is easily checked that both $(1,0,0,1)^{T}$ and $(0,1,-1,0)^{T}$ are
orthogonal to all rows of $J \mathbf{f}(\mathbf{p})$. In addition they are linearly independent which means they form a basis for $T_{\mathbf{p}}(S)$.
5. Let $S(\mathbf{u})=(\cos u \sin v, \sin u \sin v, \cos v)^{T}$, where $\mathbf{u}=(u, v)^{T}$, with $0 \leq$ $v \leq \pi, 0 \leq u \leq 2 \pi$. This is the surface of the unit ball in \mathbb{R}^{3} in standard spherical coordinates.
i. Show that the tangent space of S at $\mathbf{q}=(\pi, \pi / 2)^{T}$ is $T_{\mathbf{p}} S=\operatorname{Span}\left(\mathbf{e}_{2}\right.$, \mathbf{e}_{3}), where $\mathbf{p}=S(\mathbf{q})$.
ii. Determine also the tangent space at $\mathbf{q}=(0, \pi / 4)^{T}$.
iii. \quad a. Let $\mathbf{w}=(1,2,-1)^{T} / \sqrt{6}$. Show that $\mathbf{w} \in T_{\mathbf{p}} S$ where $\mathbf{p}=S\left((0, \pi / 4)^{T}\right)$.
b. (Tricky) The definition of $T_{\mathbf{p}} S$ is that $\mathbf{w} \in T_{\mathbf{p}} S$ only if there exists a curve $a: I \rightarrow S$ such that $\alpha(0)=\mathbf{p}$ and $\alpha^{\prime}(0)=\mathbf{w}$. Find a α in this case.

Hint In the notes we prove that $T_{\mathbf{p}}(S)=\{J \mathbf{F}(\mathbf{q}) \mathbf{x}\}$ when $S=$ $\operatorname{Im} \mathbf{F}$. Look at that proof which constructs a curve within the surface.

Solution For a parametrically defined set the tangent space is spanned by the columns of the Jacobian matrix. In this case

$$
J S(\mathbf{u})=\left(\begin{array}{cc}
-\sin u \sin v & \cos u \cos v \\
\cos u \sin v & \sin u \cos v \\
0 & -\sin v
\end{array}\right) .
$$

i. With $\mathbf{q}=(\pi, \pi / 2)^{T}$,

$$
J S(\mathbf{q})=\left(\begin{array}{rr}
0 & 0 \\
1 & 0 \\
0 & -1
\end{array}\right)
$$

The columns are \mathbf{e}_{2} and $-\mathbf{e}_{3}$ but $\operatorname{Span}\left(\mathbf{e}_{2},-\mathbf{e}_{3}\right)=\operatorname{Span}\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right)$ so result follows.

Figure for Part i:

ii. With $\mathbf{q}=(0, \pi / 4)^{T}$,

$$
J S(\mathbf{q})=\left(\begin{array}{cc}
0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

So we can choose $(1,0,-1)^{T}$ and $(0,1,0)^{T}$ as a basis for $T_{\mathbf{p}}(S)$.
Figure for Part ii:

iii. a. The first part follows since

$$
\mathbf{w}=\frac{1}{\sqrt{6}}\left(\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right)=\frac{1}{\sqrt{6}}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)+\frac{2}{\sqrt{6}}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \in T_{\mathbf{p}}(S),
$$

It might not look obvious from the following figure that \mathbf{w} lies in the plane spanned by \mathbf{v}_{1} and \mathbf{v}_{2} :

But it we change our viewpoint to sideways on to the plane it is more believable.

b. With $\mathbf{v} \in \mathbb{R}^{2}$ to be chosen our curve will be

$$
\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}, t \mapsto S(\mathbf{q}+t \mathbf{v}),
$$

for $-1 \leq t \leq 1$, say.
By its definition the image of α lies in the surface of the sphere and $\alpha(0)=S(\mathbf{q})=\mathbf{p}$ as required. The function α is a composition of S and $\mathbf{f}(t)=\mathbf{q}+t \mathbf{v}$ so, to find the tangent vector $\alpha^{\prime}(t)$, we need apply the Chain Rule.

For a vector-valued function of one variable the derivative equals the Jacobian matrix, so
$\alpha^{\prime} v(t)=J \alpha(t)=J(S \circ \mathbf{f})(t)=J S(\mathbf{f}(t)) J \mathbf{f}(t)=J S(\mathbf{f}(t)) \mathbf{f}^{\prime}(t)=J S(\mathbf{f}(t)) \mathbf{v}$.

Putting $t=0$ gives

$$
\alpha^{\prime}(0)=J S(\mathbf{f}(0)) \mathbf{v}=J S(\mathbf{q}) \mathbf{v}
$$

We require $\alpha^{\prime}(0)=\mathbf{w}$ so choose $\mathbf{v}=(u, v)^{T}$ such that $J S(\mathbf{q}) \mathbf{v}=\mathbf{w}$, i.e.

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
0 & 1 \\
1 & 0 \\
0 & -1
\end{array}\right)\binom{u}{v}=\frac{1}{\sqrt{6}}\left(\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right) .
$$

Solve this to find $\mathbf{v}=(2 / \sqrt{3}, 1 / \sqrt{3})^{T}$. Thus the required curve is

$$
t \mapsto S\left(\binom{0}{\pi / 4}+\frac{t}{\sqrt{3}}\binom{2}{1}\right)=S\left(\binom{2 t / \sqrt{3}}{\pi / 4+t / \sqrt{3}}\right) .
$$

That is

$$
t \mapsto\left(\begin{array}{c}
\cos (2 t / \sqrt{3}) \sin (\pi / 4+t / \sqrt{3}) \\
\sin (2 t / \sqrt{3}) \sin (\pi / 4+t / \sqrt{3}) \\
\cos (\pi / 4+t / \sqrt{3})
\end{array}\right) .
$$

Figure for Question 14 iiib.

Additional Questions

6 Assume $\mathbf{f}: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a C^{1}-function on U. Assume that at $\mathbf{a} \in U$ the Jacobian matrix $J f(\mathbf{a})$ is of full-rank. Prove that there exists an open set $A: \mathbf{a} \in A \subseteq U$ such that $J \mathbf{f}(\mathbf{x})$ is of full-rank for all $\mathbf{x} \in A$.

Solution Assume $n \geq m$. Then $J f(\mathbf{a})$ has m linearly independent rows. Consider the determinant of the $m \times m$ matrix consisting of these rows in $J \mathbf{f}(\mathbf{x})$. That the rows are linearly independent when $\mathbf{x}=\mathbf{a}$ means the determinant is non-zero when $\mathbf{x}=\mathbf{a}$.

Yet the determinant is a sum of products of the elements of $J \mathbf{f}(\mathbf{x})$, i.e. partial derivatives $\partial f(\mathbf{x}) / \partial x^{i}$. That is, it is a polynomial in these partial derivatives. Yet we are told that f is C^{1}, i.e. it's partial derivatives are continuous. Hence the polynomial is continuous.

So we have a continuous function, non-zero at $x=\mathbf{a}$. By the properties of continuous functions there exists an open set $A: \mathbf{a} \in A \subseteq U$ such that the polynomial is non-zero in A. That is, the determinant of m rows in $J \mathbf{f}(\mathbf{x})$ is non-zero for all $\mathbf{x} \in A$. In turn this means that $J \mathbf{f}(\mathbf{x})$ has m linearly independent rows, that is it is of full-rank, for all $\mathbf{x} \in A$.

If $m<n$ simply replace row by column in the above argument.

7 Let $C \subseteq \mathbb{R}^{3}$ be the level set

$$
\begin{aligned}
x^{2} z^{3}-x^{3} z^{2} & =0 \\
x^{2} y+x y^{3} & =2
\end{aligned}
$$

Show that in some neighbourhood of $\mathbf{p}=(1,1,1)^{T}, C$ is a curve which can be parametrized by $\mathbf{g}(x)=\left(x, g_{1}(x), g_{2}(x)\right)$ for differentiable functions g_{1} and g_{2}.

Find a parametrization of the Tangent Line to C at \mathbf{p}.
Solution The Jacobian matrix of the system at \mathbf{p} is

$$
\left(\begin{array}{ccc}
2 x z^{3}-3 x^{2} z^{2} & 0 & 3 x^{2} z^{2}-2 x^{3} z \\
2 x y+y^{3} & x^{2}+3 x y^{2} & 0
\end{array}\right)_{\mathbf{x}=\mathbf{p}}=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
3 & 4 & 0
\end{array}\right) .
$$

The last two columns are linearly independent and so the system can be solved in a neighbourhood of \mathbf{p} with the last two variables, y and z, as functions of the first variable, x. In the question $g_{1}(x)=y(x)$ and $g_{2}(x)=$ $z(x)$.

The Tangent Line is a special case (only one free parameter) of the Tangent Plane. So the Tangent line is the set of $x \in \mathbb{R}^{3}$ such that

$$
\left(\begin{array}{ccc}
-1 & 0 & 1 \\
3 & 4 & 0
\end{array}\right)\left(\begin{array}{l}
x-1 \\
y-1 \\
z-1
\end{array}\right)=\mathbf{0}, \text { that is } \begin{array}{r}
-x+z=0 \\
3 x-7+4 y=0
\end{array}
$$

Parametrically this is $\mathbf{g}(x)=(x,(7-3 x) / 4, x)^{T}, x \in \mathbb{R}$.
Alternative solution If you fail to remember how to find the Tangent Plane for a level set remember instead that the velocity vector at $\mathbf{p}=(1,1,1)^{T}$ is $\mathbf{v}=\left(1, g_{1}^{\prime}(1), g_{2}^{\prime}(1)\right)^{T}$. Though the Implicit Function Theorem justifies the existence of g_{1} and g_{2} it does not say what they are. We can, nonetheless, calculate their derivatives. Starting from

$$
\begin{aligned}
x^{2} g_{2}(x)^{3}-x^{3} g_{2}(x)^{2} & =0, \\
x^{2} g_{1}(x)+x g_{1}(x)^{3} & =2 .
\end{aligned}
$$

Take derivatives

$$
\begin{aligned}
2 x g_{2}(x)^{3}+3 x^{2} g_{2}(x)^{2} g_{2}^{\prime}(x)-3 x^{2} g_{2}(x)^{2}-2 x^{3} g_{2}(x) g_{2}^{\prime}(x) & =0, \\
2 x g_{1}(x)+x^{2} g_{1}^{\prime}(x)+g_{1}(x)^{3}+3 x g_{1}(x)^{2} g_{1}^{\prime}(x) & =0 .
\end{aligned}
$$

Choose $x=1$, when $g_{1}(1)=1$ and $g_{2}(1)=1$. Thus

$$
\begin{aligned}
2+3 g_{2}^{\prime}(x)-3-2 g_{2}^{\prime}(x) & =0 \\
2+g_{1}^{\prime}(x)+1+3 g_{1}^{\prime}(x) & =0
\end{aligned}
$$

So $g_{1}^{\prime}(1)=-3 / 4$ and $g_{2}^{\prime}(1)=1$ and the velocity vector is $\mathbf{v}=(1,-3 / 4,1)^{T}$. The Tangent line is $\mathbf{p}+s \mathbf{v}$, i.e.

$$
(1+s, 1-3 s / 4,1+s)^{T}
$$

where $s \in \mathbb{R}$. The two parametrizations are the same under the mapping $1+s \leftrightarrow x$.

8 Find the Tangent Plane to the surface

$$
\begin{aligned}
x^{3}-y^{3}+x v+u v & =0, \\
x u^{2}+y v^{2} & =0 .
\end{aligned}
$$

where $(x, y, u, v)^{T} \in \mathbb{R}^{4}$, at $\mathbf{p}=(-1,1,-1,-1)^{T}$. Give your answer as a level set, and also as a graph. Find a basis for the Tangent Space to the surface at \mathbf{p}.

Solution The Jacobian of the level set at \mathbf{p} is

$$
\left(\begin{array}{cccc}
3 x^{2}+v & -3 y^{2} & v & x+u \\
u^{2} & v^{2} & 2 x u & 2 y v
\end{array}\right)_{\mathbf{x}=\mathbf{p}}=\left(\begin{array}{rrrr}
2 & -3 & -1 & -2 \\
1 & 1 & 2 & -2
\end{array}\right) .
$$

The last two columns are linearly independent so $J \mathbf{f}(\mathbf{p})$ is of full rank. Hence the tangent plane is those $\mathbf{x} \in \mathbb{R}^{4}$ satisfying

$$
\left(\begin{array}{rrrr}
2 & -3 & -1 & -2 \\
1 & 1 & 2 & -2
\end{array}\right)\left(\begin{array}{l}
x+1 \\
y-1 \\
u+1 \\
v+1
\end{array}\right)=0
$$

which is the level set

$$
\begin{aligned}
2 x-3 y-u-2 v & =-2, \\
x+y+2 u-2 v & =0 .
\end{aligned}
$$

To find the graph solve for u and v. For example, subtracting the equations gives

$$
-x+4 y+3 u=2
$$

Alternatively, multiply the first equation by 2 and add the two

$$
5 x-5 y-6 v=-4
$$

Then the Tangent Plane is the graph of the vector-valued function

$$
\boldsymbol{\phi}(\mathbf{x})=\binom{(x-4 y+2) / 3}{(5 x-5 y+4) / 6}
$$

Then from the columns of

$$
\binom{\mathrm{x}}{\phi(\mathrm{x})}
$$

we find a basis of $(6,0,2,5)^{T}$ and $(0,6,-8,-5)^{T}$ for the Tangent Space.
Check In the notes it was shown that given a level set $\{\mathbf{x}: \mathbf{F}(\mathbf{x})=\mathbf{0}\}$ then the Tangent Space at \mathbf{p} is the set of \mathbf{x} such that $J \mathbf{F}(\mathbf{p}) \mathbf{x}=\mathbf{0}$. It was noted
that the rows of $J \mathbf{F}(\mathbf{p})$ are a basis for $T_{\mathbf{p}}(S)^{\perp}$, the orthogonal complement of $T_{\mathbf{p}}(S)$. So a basis for $T_{\mathbf{p}}(S)$ will all be orthogonal to the rows of $J \mathbf{F}(\mathbf{p})$. Are $(6,0,2,5)^{T}$ and $(0,6,-8,-5)^{T}$ orthogonal to the rows of $J \mathbf{f}(\mathbf{p})$? I leave it to the student to check, but it does show that we need never get a question such as this wrong.

9 Find parametric equations for the tangent plane passing through the given point $\mathbf{F}(\mathbf{q})$ on the parametric surfaces given by
i. $\mathbf{F}\left((x, y)^{T}\right)=\left(x^{2}+y^{2}, x y, 2 x-3 y\right)^{T}$ at $\mathbf{q}=(1,1)^{T}$.
ii. $\mathbf{F}\left((s, t)^{T}\right)=(t \cos s, t \sin s, t)^{T}, \quad \mathbf{q}=(\pi / 2,2)^{T}$,
iii. $\mathbf{F}\left((s, t)^{T}\right)=\left(t^{2} \cos s, t^{2}, t^{2} \sin s\right), \quad \mathbf{q}=(0,1)^{T}$,

Solution i. With $\mathbf{q}=(1,1)^{T}$, the Best Affine Approximation (and thus the Tangent Plane) is the image set of

$$
\begin{aligned}
\mathbf{F}(\mathbf{q})+J \mathbf{F}(\mathbf{q})(\mathbf{x}-\mathbf{q}) & =\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right)+\left(\begin{array}{rr}
2 & 2 \\
1 & 1 \\
2 & -3
\end{array}\right)\binom{x-1}{y-1} \\
& =\left(\begin{array}{c}
2 x+2 y-2 \\
x+y-1 \\
2 x-3 y
\end{array}\right),
\end{aligned}
$$

for $\mathbf{x} \in \mathbb{R}^{2}$.
ii. the Tangent Plane is $\left\{\mathbf{x} \in \mathbb{R}^{3}: z=y\right\}$.
iii. the Tangent Plane is $\left\{\mathbf{x} \in \mathbb{R}^{3}: x=y\right\}$.

10 Find parametric equation for the Tangent Plane passing through the point $\mathbf{F}(\mathbf{q})$ on the parametric surface given by $\mathbf{F}(\mathbf{x})=(y z, x z, x y, x y z)^{T}$, for $\mathbf{x}=(x, y, z)^{T}$ at $\mathbf{q}=(1,-1,2)^{T}$.
Solution The Jacobian matrix is

$$
J \mathbf{F}(\mathbf{x})=\left(\begin{array}{ccc}
0 & z & y \\
z & 0 & x \\
y & x & 0 \\
y z & x z & x y
\end{array}\right) \quad \text { so } \quad J \mathbf{F}(\mathbf{q})=\left(\begin{array}{rrr}
0 & 2 & -1 \\
2 & 0 & 1 \\
-1 & 1 & 0 \\
-2 & 2 & -1
\end{array}\right)
$$

The Jacobian matrix is of full rank so the Tangent Plane is the image of Best Affine Approximation;

$$
\begin{aligned}
\mathbf{F}(\mathbf{q})+J \mathbf{F}(\mathbf{q})(\mathbf{x}-\mathbf{q}) & =\left(\begin{array}{r}
-2 \\
2 \\
-1 \\
-2
\end{array}\right)+\left(\begin{array}{rrr}
0 & 2 & -1 \\
2 & 0 & 1 \\
-1 & 1 & 0 \\
-2 & 2 & -1
\end{array}\right)\left(\begin{array}{l}
x-1 \\
y+1 \\
z-2
\end{array}\right) \\
& =\left(\begin{array}{c}
2 y-z+2 \\
2 x+z-2 \\
-x+y+1 \\
-2 x+2 y-z+4
\end{array}\right) .
\end{aligned}
$$

11. Find the tangent planes at the points $\mathbf{p}_{1}=(1 / \sqrt{2}, 1 / 4,1 / 4)$ and $\mathbf{p}_{2}=$ $(\sqrt{3} / 2,0,1 / 4)$ on the ellipsoid $x^{2}+4 y^{2}+4 z^{2}=1$.

Find the line of intersection of these two planes.
Solution Let $f(\mathbf{x})=x^{2}+4 y^{2}+4 z^{2}-1$ so the ellipsoid is the level set $f^{-1}(0)$. The Jacobian matrix is $J f(\mathbf{x})=(2 x, 8 y, 8 z)$. The Tangent Plane to $f^{-1}(0)$ at \mathbf{p}_{1} is

$$
\begin{aligned}
0 & =J f\left(\mathbf{p}_{1}\right)\left(\mathbf{x}-\mathbf{p}_{1}\right)=2 \frac{1}{\sqrt{2}}\left(x-\frac{1}{\sqrt{2}}\right)+8 \frac{1}{4}\left(y-\frac{1}{4}\right)+8 \frac{1}{4}\left(z-\frac{1}{4}\right) \\
& =\sqrt{2} x+2 y+2 z-2 .
\end{aligned}
$$

That is $\sqrt{2} x+2 y+2 z=2$.
Similarly the plane at \mathbf{p}_{2} is $\sqrt{3} x+2 z=2$.
Solving for y and z and the line of intersection can be given parametrically as

$$
\left\{\left(t, \frac{(\sqrt{3}-\sqrt{2})}{2} t, 1-t \frac{\sqrt{3}}{2}\right)^{T}: t \in \mathbb{R}\right\} .
$$

12. i. Find the Tangent Plane to the surface $z=x e^{y}$ at the point $\mathbf{p}=$ $(1,0,1)^{T}$ on the surface.
ii. The surfaces $x^{2}+y^{2}-z^{2}=1$ and $x+y+z=5$ intersect in a curve Γ. Find the equation in parametric form of the tangent line to Γ at the point $(1,2,2)^{T}$.

Solution i. Let $f(\mathbf{x})=x e^{y}-z$, where $\mathbf{x}=(x, y, z)^{T}$, so the surface is the level set $f^{-1}(0)$. The Jacobian matrix is $J f(\mathbf{x})=\left(e^{y}, x e^{y},-1\right)$ so $J f(\mathbf{p})=$ $(1,1,-1)$. The Tangent plane is $J f(\mathbf{p})(\mathbf{x}-\mathbf{p})=0$, that is $\mathbf{x} \in \mathbb{R}^{3}$ such that

$$
0=(1,1,-1)\left(\begin{array}{l}
x-1 \\
y-0 \\
z-1
\end{array}\right)=x+y-z,
$$

i.e. $x+y-z=0$.

Just in case you cannot see the Tangent Plane, here shown under the surface:

I've now changed my viewpoint around by 90° and up a little:

(b) Let $\mathbf{F}(\mathbf{x})=\left(x^{2}+y^{2}-z^{2}-1, x+y+z-5\right)^{T}$. Then Γ is the level set $\mathbf{F}^{-1}(\mathbf{0})$. The Jacobian matrix is

$$
J \mathbf{F}(\mathbf{x})=\left(\begin{array}{ccc}
2 x & 2 y & -2 z \\
1 & 1 & 1
\end{array}\right) \quad \text { so } \quad J \mathbf{F}(\mathbf{p})=\left(\begin{array}{ccc}
2 & 4 & -4 \\
1 & 1 & 1
\end{array}\right)
$$

where $\mathbf{p}=(1,2,2)^{T}$. The Tangent plane to the level set at \mathbf{p} is

$$
\left\{\mathbf{x} \in \mathbb{R}^{3}: J \mathbf{F}(\mathbf{p})(\mathbf{x}-\mathbf{p})=0\right\}=\left\{\mathbf{x} \in \mathbb{R}^{3}:\left(\begin{array}{rrr}
2 & 4 & -4 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x-1 \\
y-2 \\
z-2
\end{array}\right)=0\right\} .
$$

Thus we get the Tangent plane (here a line) as a level set

$$
\begin{aligned}
x+2 y-2 z & =1 \\
x+y+z & =5 .
\end{aligned}
$$

To give the answer in parametric form solve for y and z. Perhaps $2 \times$ second equation add to first so $3 x+4 y=11$, i.e. $y=(11-3 x) / 4$. In the second equation for

$$
z=5-x-y=(20-4 x-11+3 x) / 4=(9-x) / 4 .
$$

Hence a parametric form for the Tangent line is

$$
\left\{\left(x, \frac{11-3 x}{4}, \frac{9-x}{4}\right)^{T}: x \in \mathbb{R}\right\} .
$$

You might not like fractions, but a change of variables, $x=1+4 t$, gives

$$
\left\{(1+4 t, 2-3 t, 2-t)^{T}: t \in \mathbb{R}\right\} .
$$

Hopefully you can see in the following figure the blue line of intersection of the plane $x+y+z=5$ with the hyperboloid $x^{2}+y^{2}-z^{2}=1$, along with the red tangent line:

13. i. Consider the surface $S=\left\{(x, y, z)^{T} \in \mathbb{R}^{3}: x y=z\right\}$. Let $\mathbf{p}=$ $(A, B, C)^{T}$ be a generic point of S. Find the Tangent Plane at \mathbf{p}.
ii. Show that the intersection of the Tangent Plane with S consists of two straight lines.
Solution i. If $f(\mathbf{x})=x y-z$ then $S=f^{-1}(0)$. The Tangent plane for a level set at \mathbf{p} is the set of \mathbf{x} such that $J f(\mathbf{p})(\mathbf{x}-\mathbf{p})=0$. In this case $J f(\mathbf{p})=(y, x,-1)_{\mathbf{x}=\mathbf{p}}=(B, A,-1)$. So the plane is the $\mathbf{x} \in \mathbb{R}^{3}$ such that

$$
0=J f(\mathbf{p})(\mathbf{x}-\mathbf{p})=(B, A,-1)\left(\begin{array}{l}
x-A \\
y-B \\
z-C
\end{array}\right)=B x+A y-z-2 A B+C
$$

That is

$$
B x+A y-z=2 A B-C=A B
$$

since $A B=C$ because $(A, B, C)^{T} \in S$.
ii. The intersection of the Tangent plane with S consists of $(x, y, z)^{T}: B x+$ $A y-z=A B$ and $x y=z$. Combine as $B x+A y-x y=A B$, which rearranges as $(x-A)(y-B)=0$. Thus we have either $x=A$ or $y=B$.

If $x=A$ then the equation of the surface becomes $A y=z$ and we get the straight line $\left\{(A, t, A t)^{T}: t \in \mathbb{R}\right\}$.

If $y=B$ we get the straight line $\left\{(t, B, B t)^{T}: t \in \mathbb{R}\right\}$.

Does this help as an illustration?

