Solutions to Problems 8 Tangent Spaces & Planes

Tangent Planes to level sets.

1. For each of the following level sets find the tangent plane to the surface at the given point **p** and give your answer *as a level set*.

i. $(x, y, z)^T \in \mathbb{R}^3$: $x^2 + y^2 + z^2 = 14$ with $\mathbf{p} = (2, 1, -3)^T$, ii. $(x, y, z)^T \in \mathbb{R}^3$:

$$\begin{aligned} x^2 + 3y^2 + 2z^2 &= 9, \\ xyz &= -2, \end{aligned}$$

with $\mathbf{p} = (2, -1, 1)^T$,

iii. $(x, y, u, v) \in \mathbb{R}^4$:

$$x^{3} - 3yu + u^{2} + 2xv = 12$$
$$xv^{2} + 2y^{2} - 3u^{2} - 3yv = -3.$$

with
$$\mathbf{p} = (1, 2, -1, 2)^T$$
,

Solution *Theory:* From the notes the Tangent Plane to a point \mathbf{p} on a level set $\mathbf{f}^{-1}(\mathbf{0})$ is

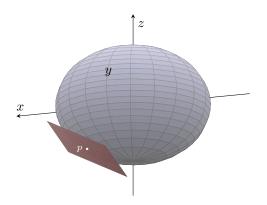
$$\{\mathbf{x}: J\mathbf{f}(\mathbf{p})(\mathbf{x}-\mathbf{p})=\mathbf{0}\}.$$

i. With $f(\mathbf{x}) = x^2 + y^2 + z^2 - 14$ and $\mathbf{p} = (2, 1, -3)^T$ the Jacobian matrix is $Jf(\mathbf{p}) = (4, 2, -6)$. This is non-zero and so of full-rank and thus the Tangent Plane is those $\mathbf{x} \in \mathbb{R}^3$ satisfying

$$(4,2,-6)\left(\begin{array}{c}x-2\\y-1\\z+3\end{array}\right) = \mathbf{0},$$

that is 4x + 2y - 6z - 28 = 0.

Figure for Part i showing the sphere with the Tangent Plane z = (4x + 2y - 28)/6:



ii. The Jacobian of the level set at ${\bf p}$ is

$$J\mathbf{f}(\mathbf{p}) = \begin{pmatrix} 2x & 6y & 4z \\ yz & xz & xy \end{pmatrix}_{\mathbf{x}=\mathbf{p}} = \begin{pmatrix} 4 & -6 & 4 \\ -1 & 2 & -2 \end{pmatrix}.$$

The rows are not linear multiples of each other so $J\mathbf{f}(\mathbf{p})$ is of full rank. Hence the Tangent Plane is those $\mathbf{x} \in \mathbb{R}^3$ satisfying

$$\begin{pmatrix} 4 & -6 & 4 \\ -1 & 2 & -2 \end{pmatrix} \begin{pmatrix} x-2 \\ y+1 \\ z-1 \end{pmatrix} = \mathbf{0},$$

that is

$$2x - 9 - 3y + 2z = 0,$$

$$-x + 6 + 2y - 2z = 0.$$

iii. The Jacobian of the level set at \mathbf{p} is

$$\left(\begin{array}{cccc} 3x^2 + 2v & -3u & -3y + 2u & 2x \\ v^2 & 4y - 3v & -6u & 2xv - 3y \end{array}\right)_{\mathbf{x}=\mathbf{p}} = \left(\begin{array}{cccc} 7 & 3 & -8 & 2 \\ 4 & 2 & 6 & -2 \end{array}\right).$$

The last two **columns** are linearly independent so $J\mathbf{f}(\mathbf{p})$ is of full rank. Hence the Tangent Plane is those $\mathbf{x} \in \mathbb{R}^4$ satisfying

$$\left(\begin{array}{rrrr} 7 & 3 & -8 & 2 \\ 4 & 2 & 6 & -2 \end{array}\right) \left(\begin{array}{r} x - 1 \\ y - 2 \\ u + 1 \\ v - 2 \end{array}\right) = \mathbf{0},$$

which is the level set

$$7x + 3y - 8u + 2v = 25,$$

$$4x + 2y + 6u - 2v = -2.$$

2. Return to your answers of Question 1 and write them as graphs instead of level sets. Then give a basis for the Tangent Space.

Solution i. The Tangent Plane was previously given, in Question 1, as those $\mathbf{x} \in \mathbb{R}^3$ satisfying 4x + 2y - 6z - 28 = 0. This can be written as the graph

$$\left\{ \left(\begin{array}{c} x\\ y\\ (4x+2y-28)/6 \end{array}\right) : \begin{pmatrix} x\\ y \end{pmatrix} \in \mathbb{R}^2 \right\}.$$

Since

$$\begin{pmatrix} x \\ y \\ (4x+2y-28)/6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -28/6 \end{pmatrix} + x \begin{pmatrix} 1 \\ 0 \\ 2/3 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 1/3 \end{pmatrix},$$

a basis for the Tangent Space will be $(1, 0, 2/3)^T$ and $(0, 1, 1/3)^T$ which we could re-scale as $(3, 0, 2)^T$ and $(0, 3, 1)^T$.

ii. The Tangent Plane was previously given as those $\mathbf{x} \in \mathbb{R}^3$ satisfying

$$2x - 9 - 3y + 2z = 0,$$

$$-x + 6 + 2y - 2z = 0.$$

These simultaneous equations can be solved for y and z as functions of x, giving y = x - 3 and z = x/2. Thus the plane is given by the graph

$$\left\{ \left(\begin{array}{c} x\\ x-3\\ x/2 \end{array}\right) : x \in \mathbb{R} \right\}.$$

This is the graph of the vector valued function

$$\boldsymbol{\phi}\left(x\right) = \left(\begin{array}{c} x-3\\ x/2 \end{array}\right).$$

Though called a plane it is geometrically a line.

Writing

$$\begin{pmatrix} x\\ x-3\\ x/2 \end{pmatrix} = x \begin{pmatrix} 1\\ 1\\ 1/2 \end{pmatrix} + \begin{pmatrix} 0\\ -3\\ 0 \end{pmatrix},$$

we see that $(2,2,1)^T$ is a basis vector for the Tangent Space.

iii The Tangent Plane was previously given as those $\mathbf{x} \in \mathbb{R}^4$ satisfying

$$7x + 3y - 8u + 2v = 25$$
$$4x + 2y + 6u - 2v = -2.$$

Equivalent to solving for u and v is to start with the augmented matrix

Then apply row operations

$$\xrightarrow[r_1 \to r_1 + r_2]{} \left(\begin{array}{ccc|c} 11 & 5 & -2 & 0 \\ 4 & 2 & 6 & -2 \\ \end{array} \right) \left| \begin{array}{c} 23 \\ -2 \\ \end{array} \right) \xrightarrow[r_2 \to r_2 + 3r_1]{} \left(\begin{array}{ccc|c} 11 & 5 & -2 & 0 \\ 37 & 17 & 0 & -2 \\ \end{array} \right) \left| \begin{array}{c} 23 \\ 67 \\ \end{array} \right) \cdots$$

We could continue to get the identity matrix in the columns corresponding to u and v, but instead we translate the matrix back into equations

$$2u = 11x + 5y - 23$$

$$2v = 37x + 17y - 67.$$

Thus the level set is the graph of the function $\phi : \mathbb{R}^2 \to \mathbb{R}^2$,

$$\phi(\mathbf{x}) = \left(\begin{array}{c} (11x + 5y - 23)/2\\ (37x + 17y - 67)/2 \end{array}\right),\,$$

where $\mathbf{x} = (x, y)^T \in \mathbb{R}^2$. Looking at the columns in $(\mathbf{x}^T, \boldsymbol{\phi}(\mathbf{x})^T)^T$ we find that the vectors $(2, 0, 11, 37)^T$ and $(0, 2, 5, 17)^T$ span the Tangent Space.

Tangent Spaces for Image sets.

3. In each case, find parametric equations for the Tangent Plane passing through the point $\mathbf{F}(\mathbf{q})$ on the parametric surfaces given by the following functions.

i. $\mathbf{F}((x,y)^T) = (x^2 + y^2, xy, 2x - 3y)^T$, at $\mathbf{q} = (1,2)^T$, ii. $\mathbf{F}((x,y)^T) = (xy^2, x^2 + y, x^3 - y^2, y^2)^T$, at $\mathbf{q} = (-1,2)^T$,

iii.
$$\mathbf{F}(t) = (\cos t, \sin t, t)^T$$
 at $q = 3\pi$.

Solution From the Theory: A result from the notes states that if $J\mathbf{F}(\mathbf{q})$ is of full rank then the tangent plane to the image set of a function is the image set of the Best Affine Approximation to the function.

i. The Jacobian matrix is

$$J\mathbf{F}(\mathbf{x}) = \begin{pmatrix} 2x & 2y \\ y & x \\ 2 & -3 \end{pmatrix} \quad \text{so} \quad J\mathbf{F}(\mathbf{q}) = \begin{pmatrix} 2 & 4 \\ 2 & 1 \\ 2 & -3 \end{pmatrix}.$$

The Jacobian matrix $J\mathbf{F}(\mathbf{q})$ is of full rank so the Tangent Plane is the image of the Best Affine Approximation:

$$\mathbf{F}(\mathbf{q}) + J\mathbf{F}(\mathbf{q})(\mathbf{x} - \mathbf{q}) = \begin{pmatrix} 5\\2\\-4 \end{pmatrix} + \begin{pmatrix} 2 & 4\\2 & 1\\2 & -3 \end{pmatrix} \begin{pmatrix} x - 1\\y - 2 \end{pmatrix}$$
$$= \begin{pmatrix} 2x + 4y - 5\\2x + y - 2\\2x - 3y \end{pmatrix},$$

for $\mathbf{x} \in \mathbb{R}^2$.

Note that the last coordinate function for the Tangent plane is identical to the last one in the definition of **F**. This should be no surprise since 2x - 3y is linear.

ii. The Jacobian matrix at **q** is

$$J\mathbf{F}(\mathbf{q}) = \begin{pmatrix} y^2 & 2xy \\ 2x & 1 \\ 3x^2 & -2y \\ 0 & 2y \end{pmatrix}_{\mathbf{x}=\mathbf{q}} = \begin{pmatrix} 4 & -4 \\ -2 & 1 \\ 3 & -4 \\ 0 & 4 \end{pmatrix}.$$

It is quickly seen from the last row that the two columns are linearly independent (make sure you understand this) and so $J\mathbf{F}(\mathbf{q})$ is of full-rank. Then the Tangent Plane is the image of the Best Affine Approximation:

$$\mathbf{F}(\mathbf{q}) + J\mathbf{F}(\mathbf{q})(\mathbf{x} - \mathbf{q}) = \begin{pmatrix} -4\\ 3\\ -5\\ 4 \end{pmatrix} + \begin{pmatrix} 4 & -4\\ -2 & 1\\ 3 & -4\\ 0 & 4 \end{pmatrix} \begin{pmatrix} x+1\\ y-2 \end{pmatrix}$$
$$= \begin{pmatrix} 4x - 4y + 8\\ -2x + y - 1\\ 3x - 4y + 6\\ 4y - 4 \end{pmatrix},$$

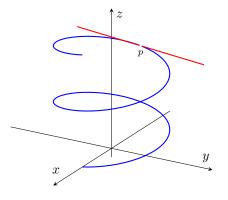
with $\mathbf{x} \in \mathbb{R}^2$.

iii. The Tangent Plane is the image of the Best Affine Approximation:

$$\mathbf{F}(q) + J\mathbf{F}(q)(t-q) = \begin{pmatrix} -1\\ 0\\ 3\pi \end{pmatrix} + \begin{pmatrix} 0\\ -2\\ 1 \end{pmatrix} (t-3\pi)$$
$$= \begin{pmatrix} -1\\ -2t+6\pi\\ t \end{pmatrix}.$$

Though called a tangent **plane** this is geometrically a **line**.

Figure for Question 11iii:



4. Return to Question 7 on Sheet 6. You were asked to show, by using the

Implicit Function Theorem, that the following equations

$$x^{2} + y^{2} + 2uv = 4$$
(1)
$$x^{3} + y^{3} + u^{3} - v^{3} = 0,$$

determine u and v as functions of x and y for $(x, y)^T$ in an open subset of \mathbb{R}^2 containing the point $\mathbf{q} = (-1, 1)^T \in \mathbb{R}^2$. The implicit function theorem is an existence result, it does not say what u and v are as functions of x and y. Nonetheless it is possible to find their partial derivatives and you were asked to do this. The answer was

$$\frac{\partial u}{\partial x}(\mathbf{q}) = 0, \ \frac{\partial v}{\partial x}(\mathbf{q}) = 1, \ \frac{\partial u}{\partial y}(\mathbf{q}) = -1 \text{ and } \frac{\partial v}{\partial y}(\mathbf{q}) = 0.$$

Use these partial derivatives to find a basis for the tangent space at $\mathbf{p} = (-1, 1, 1, 1)^T$.

Solution The Implicit Function Theorem says that, for $(x, y)^T$ restricted to some set V containing **q**, the points in the level set lie in the image set of

$$\mathbf{F}\left(\mathbf{x}\right) = \begin{pmatrix} x \\ y \\ u(x,y) \\ v(x,y) \end{pmatrix}.$$

where $\mathbf{x} = (x, y)^T \in V$. Yet the Tangent space at a point $\mathbf{p} \in S$ on a surface given parametrically as the image of \mathbf{F} is spanned by the columns of $J\mathbf{F}(\mathbf{q})$. In our case the Jacobian at \mathbf{q} is

$$\begin{pmatrix} 1 & 0\\ 0 & 1\\ \frac{\partial u(\mathbf{q})}{\partial x} & \frac{\partial u(\mathbf{q})}{\partial y}\\ \frac{\partial v(\mathbf{q})}{\partial x} & \frac{\partial v(\mathbf{q})}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1\\ 0 & -1\\ 1 & 0 \end{pmatrix}$$

Hence the Tangent Space is spanned by $(1, 0, 0, 1)^T$ and $(0, 1, -1, 0)^T$. **To double check** The Jacobian matrix of the system at **p** is

$$J\mathbf{f}(\mathbf{p}) = \begin{pmatrix} 2x & 2y & 2v & 2u \\ 3x^2 & 3y^2 & 3u^2 & -3v^2 \end{pmatrix}_{\mathbf{x}=\mathbf{p}} = \begin{pmatrix} -2 & 2 & 2 & 2 \\ 3 & 3 & 3 & -3 \end{pmatrix}.$$

The rows of $J\mathbf{f}(\mathbf{p})$ span $T_{\mathbf{p}}(S)^{\perp}$ so we need vectors orthogonal to the rows of $J\mathbf{f}(\mathbf{p})$. It is easily checked that both $(1,0,0,1)^T$ and $(0,1,-1,0)^T$ are

orthogonal to all rows of $J\mathbf{f}(\mathbf{p})$. In addition they are linearly independent which means they form a basis for $T_{\mathbf{p}}(S)$.

5. Let $S(\mathbf{u}) = (\cos u \sin v, \sin u \sin v, \cos v)^T$, where $\mathbf{u} = (u, v)^T$, with $0 \le v \le \pi$, $0 \le u \le 2\pi$. This is the surface of the unit ball in \mathbb{R}^3 in standard spherical coordinates.

- i. Show that the tangent space of S at $\mathbf{q} = (\pi, \pi/2)^T$ is $T_{\mathbf{p}}S = \text{Span}(\mathbf{e}_2, \mathbf{e}_3)$, where $\mathbf{p} = S(\mathbf{q})$.
- ii. Determine also the tangent space at $\mathbf{q} = (0, \pi/4)^T$.
- iii. a. Let $\mathbf{w} = (1, 2, -1)^T / \sqrt{6}$. Show that $\mathbf{w} \in T_{\mathbf{p}}S$ where $\mathbf{p} = S((0, \pi/4)^T)$.
 - b. (Tricky) The definition of $T_{\mathbf{p}}S$ is that $\mathbf{w} \in T_{\mathbf{p}}S$ only if there exists a curve $a : I \to S$ such that $\alpha(0) = \mathbf{p}$ and $\alpha'(0) = \mathbf{w}$. Find a α in this case.

Hint In the notes we prove that $T_{\mathbf{p}}(S) = \{J\mathbf{F}(\mathbf{q})\mathbf{x}\}$ when $S = \text{Im }\mathbf{F}$. Look at that proof which constructs a curve within the surface.

Solution For a parametrically defined set the tangent space is spanned by the columns of the Jacobian matrix. In this case

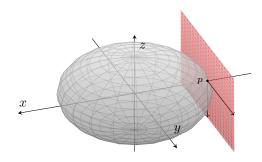
$$JS(\mathbf{u}) = \begin{pmatrix} -\sin u \sin v & \cos u \cos v \\ \cos u \sin v & \sin u \cos v \\ 0 & -\sin v \end{pmatrix}.$$

i. With $\mathbf{q} = (\pi, \pi/2)^T$,

$$JS(\mathbf{q}) = \begin{pmatrix} 0 & 0\\ 1 & 0\\ 0 & -1 \end{pmatrix}.$$

The columns are \mathbf{e}_2 and $-\mathbf{e}_3$ but $\operatorname{Span}(\mathbf{e}_2, -\mathbf{e}_3) = \operatorname{Span}(\mathbf{e}_2, \mathbf{e}_3)$ so result follows.

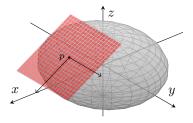
Figure for Part i:



ii. With $\mathbf{q} = (0, \pi/4)^T$,

$$JS(\mathbf{q}) = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 \\ 0 & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

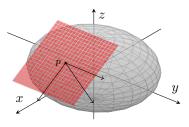
So we can choose $(1, 0, -1)^T$ and $(0, 1, 0)^T$ as a basis for $T_{\mathbf{p}}(S)$. Figure for Part ii:



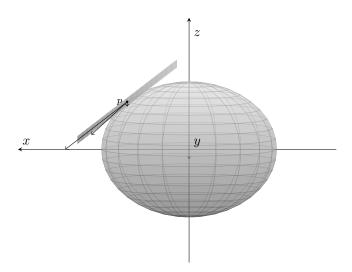
iii. a. The first part follows since

$$\mathbf{w} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\2\\-1 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \frac{2}{\sqrt{6}} \begin{pmatrix} 0\\1\\0 \end{pmatrix} \in T_{\mathbf{p}}(S),$$

It might not look obvious from the following figure that \mathbf{w} lies in the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 :



But it we change our viewpoint to sideways on to the plane it is more believable.



b. With $\mathbf{v} \in \mathbb{R}^2$ to be chosen our curve will be

$$\alpha: \mathbb{R} \to \mathbb{R}^3, t \mapsto S(\mathbf{q} + t\mathbf{v}),$$

for $-1 \leq t \leq 1$, say.

By its definition the image of α lies in the surface of the sphere and $\alpha(0) = S(\mathbf{q}) = \mathbf{p}$ as required. The function α is a composition of S and $\mathbf{f}(t) = \mathbf{q} + t\mathbf{v}$ so, to find the tangent vector $\alpha'(t)$, we need apply the Chain Rule.

For a vector-valued function of one variable the derivative equals the Jacobian matrix, so

$$\alpha' v(t) = J\alpha(t) = J(S \circ \mathbf{f})(t) = JS(\mathbf{f}(t)) J\mathbf{f}(t) = JS(\mathbf{f}(t)) \mathbf{f}'(t) = JS(\mathbf{f}(t)) \mathbf{v}$$

Putting t = 0 gives

$$\alpha'(0) = JS(\mathbf{f}(0))\,\mathbf{v} = JS(\mathbf{q})\,\mathbf{v}.$$

We require $\alpha'(0) = \mathbf{w}$ so choose $\mathbf{v} = (u, v)^T$ such that $JS(\mathbf{q}) \mathbf{v} = \mathbf{w}$, i.e.

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1\\ 1 & 0\\ 0 & -1 \end{pmatrix} \begin{pmatrix} u\\ v \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}.$$

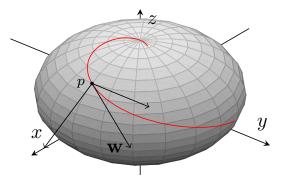
Solve this to find $\mathbf{v} = (2/\sqrt{3}, 1/\sqrt{3})^T$. Thus the required curve is

$$t \mapsto S\left(\left(\begin{array}{c} 0\\ \pi/4 \end{array} \right) + \frac{t}{\sqrt{3}} \left(\begin{array}{c} 2\\ 1 \end{array} \right) \right) = S\left(\left(\begin{array}{c} 2t/\sqrt{3}\\ \pi/4 + t/\sqrt{3} \end{array} \right) \right).$$

That is

$$t \mapsto \left(\begin{array}{c} \cos\left(2t/\sqrt{3}\right)\sin\left(\pi/4 + t/\sqrt{3}\right)\\ \sin\left(2t/\sqrt{3}\right)\sin\left(\pi/4 + t/\sqrt{3}\right)\\ \cos\left(\pi/4 + t/\sqrt{3}\right) \end{array}\right).$$

Figure for Question 14 iiib.



Additional Questions

6 Assume $\mathbf{f}: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is a C^1 -function on U. Assume that at $\mathbf{a} \in U$ the Jacobian matrix $J\mathbf{f}(\mathbf{a})$ is of full-rank. Prove that there exists an open set $A: \mathbf{a} \in A \subseteq U$ such that $J\mathbf{f}(\mathbf{x})$ is of full-rank for all $\mathbf{x} \in A$.

Solution Assume $n \ge m$. Then $J\mathbf{f}(\mathbf{a})$ has m linearly independent rows. Consider the determinant of the $m \times m$ matrix consisting of these rows in $J\mathbf{f}(\mathbf{x})$. That the rows are linearly independent when $\mathbf{x} = \mathbf{a}$ means the determinant is non-zero when $\mathbf{x} = \mathbf{a}$.

Yet the determinant is a sum of products of the elements of $J\mathbf{f}(\mathbf{x})$, i.e. partial derivatives $\partial f(\mathbf{x}) / \partial x^i$. That is, it is a polynomial in these partial derivatives. Yet we are told that f is C^1 , i.e. it's partial derivatives are continuous. Hence the polynomial is continuous.

So we have a continuous function, non-zero at $x = \mathbf{a}$. By the properties of continuous functions there exists an open set $A : \mathbf{a} \in A \subseteq U$ such that the polynomial is non-zero in A. That is, the determinant of m rows in $J\mathbf{f}(\mathbf{x})$ is non-zero for all $\mathbf{x} \in A$. In turn this means that $J\mathbf{f}(\mathbf{x})$ has m linearly independent rows, that is it is of full-rank, for all $\mathbf{x} \in A$.

If m < n simply replace row by column in the above argument.

7 Let $C \subseteq \mathbb{R}^3$ be the level set

$$\begin{array}{rcl} x^2 z^3 - x^3 z^2 &=& 0, \\ x^2 y + x y^3 &=& 2. \end{array}$$

Show that in some neighbourhood of $\mathbf{p} = (1, 1, 1)^T$, *C* is a curve which can be parametrized by $\mathbf{g}(x) = (x, g_1(x), g_2(x))$ for differentiable functions g_1 and g_2 .

Find a parametrization of the Tangent Line to C at \mathbf{p} .

Solution The Jacobian matrix of the system at **p** is

$$\begin{pmatrix} 2xz^3 - 3x^2z^2 & 0 & 3x^2z^2 - 2x^3z \\ 2xy + y^3 & x^2 + 3xy^2 & 0 \end{pmatrix}_{\mathbf{x}=\mathbf{p}} = \begin{pmatrix} -1 & 0 & 1 \\ 3 & 4 & 0 \end{pmatrix}.$$

The last two columns are linearly independent and so the system can be solved in a neighbourhood of **p** with the last two variables, y and z, as functions of the first variable, x. In the question $g_1(x) = y(x)$ and $g_2(x) = z(x)$. The Tangent Line is a special case (only one free parameter) of the Tangent Plane. So the Tangent line is the set of $x \in \mathbb{R}^3$ such that

$$\begin{pmatrix} -1 & 0 & 1 \\ 3 & 4 & 0 \end{pmatrix} \begin{pmatrix} x-1 \\ y-1 \\ z-1 \end{pmatrix} = \mathbf{0}, \text{ that is } \begin{aligned} -x+z &= 0 \\ 3x-7+4y &= 0 \end{aligned}$$

Parametrically this is $\mathbf{g}(x) = (x, (7-3x)/4, x)^T, x \in \mathbb{R}.$

Alternative solution If you fail to remember how to find the Tangent Plane for a level set remember instead that the velocity vector at $\mathbf{p} = (1, 1, 1)^T$ is $\mathbf{v} = (1, g'_1(1), g'_2(1))^T$. Though the Implicit Function Theorem justifies the existence of g_1 and g_2 it does not say what they are. We can, nonetheless, calculate their derivatives. Starting from

$$x^{2}g_{2}(x)^{3} - x^{3}g_{2}(x)^{2} = 0,$$

$$x^{2}g_{1}(x) + xg_{1}(x)^{3} = 2.$$

Take derivatives

$$2xg_2(x)^3 + 3x^2g_2(x)^2g'_2(x) - 3x^2g_2(x)^2 - 2x^3g_2(x)g'_2(x) = 0,$$

$$2xg_1(x) + x^2g'_1(x) + g_1(x)^3 + 3xg_1(x)^2g'_1(x) = 0.$$

Choose x = 1, when $g_1(1) = 1$ and $g_2(1) = 1$. Thus

$$2 + 3g'_2(x) - 3 - 2g'_2(x) = 0,$$

$$2 + g'_1(x) + 1 + 3g'_1(x) = 0.$$

So $g'_1(1) = -3/4$ and $g'_2(1) = 1$ and the velocity vector is $\mathbf{v} = (1, -3/4, 1)^T$. The Tangent line is $\mathbf{p} + s\mathbf{v}$, i.e.

$$(1+s, 1-3s/4, 1+s)^T$$

where $s \in \mathbb{R}$. The two parametrizations are the same under the mapping $1 + s \leftrightarrow x$.

8 Find the Tangent Plane to the surface

$$x^{3} - y^{3} + xv + uv = 0,$$

$$xu^{2} + yv^{2} = 0.$$

where $(x, y, u, v)^T \in \mathbb{R}^4$, at $\mathbf{p} = (-1, 1, -1, -1)^T$. Give your answer as a level set, and also as a graph. Find a basis for the Tangent Space to the surface at \mathbf{p} .

Solution The Jacobian of the level set at \mathbf{p} is

$$\begin{pmatrix} 3x^2 + v & -3y^2 & v & x+u \\ u^2 & v^2 & 2xu & 2yv \end{pmatrix}_{\mathbf{x}=\mathbf{p}} = \begin{pmatrix} 2 & -3 & -1 & -2 \\ 1 & 1 & 2 & -2 \end{pmatrix}.$$

The last two **columns** are linearly independent so $J\mathbf{f}(\mathbf{p})$ is of full rank. Hence the tangent plane is those $\mathbf{x} \in \mathbb{R}^4$ satisfying

$$\begin{pmatrix} 2 & -3 & -1 & -2 \\ 1 & 1 & 2 & -2 \end{pmatrix} \begin{pmatrix} x+1 \\ y-1 \\ u+1 \\ v+1 \end{pmatrix} = 0,$$

which is the level set

$$2x - 3y - u - 2v = -2,$$

$$x + y + 2u - 2v = 0.$$

To find the graph solve for u and v. For example, subtracting the equations gives

$$-x + 4y + 3u = 2.$$

Alternatively, multiply the first equation by 2 and add the two

$$5x - 5y - 6v = -4.$$

Then the Tangent Plane is the graph of the vector-valued function

$$\boldsymbol{\phi}(\mathbf{x}) = \left(\begin{array}{c} (x - 4y + 2)/3\\ (5x - 5y + 4)/6 \end{array}\right)$$

Then from the columns of

$$\left(egin{array}{c} {f x} \ \phi({f x}) \end{array}
ight)$$

we find a basis of $(6, 0, 2, 5)^T$ and $(0, 6, -8, -5)^T$ for the Tangent Space.

Check In the notes it was shown that given a level set $\{\mathbf{x} : \mathbf{F}(\mathbf{x}) = \mathbf{0}\}$ then the Tangent Space at **p** is the set of **x** such that $J\mathbf{F}(\mathbf{p})\mathbf{x} = \mathbf{0}$. It was noted that the rows of $J\mathbf{F}(\mathbf{p})$ are a basis for $T_{\mathbf{p}}(S)^{\perp}$, the orthogonal complement of $T_{\mathbf{p}}(S)$. So a basis for $T_{\mathbf{p}}(S)$ will all be orthogonal to the rows of $J\mathbf{F}(\mathbf{p})$. Are $(6, 0, 2, 5)^{T}$ and $(0, 6, -8, -5)^{T}$ orthogonal to the rows of $J\mathbf{f}(\mathbf{p})$? I leave it to the student to check, but it does show that we need never get a question such as this wrong.

 ${\bf 9}\,$ Find parametric equations for the tangent plane passing through the given point ${\bf F}({\bf q})$ on the parametric surfaces given by

i. $\mathbf{F}((x,y)^T) = (x^2 + y^2, xy, 2x - 3y)^T$ at $\mathbf{q} = (1,1)^T$. ii. $\mathbf{F}((s,t)^T) = (t\cos s, t\sin s, t)^T$, $\mathbf{q} = (\pi/2, 2)^T$, iii. $\mathbf{F}((s,t)^T) = (t^2\cos s, t^2, t^2\sin s)$, $\mathbf{q} = (0,1)^T$,

Solution i. With $\mathbf{q} = (1, 1)^T$, the Best Affine Approximation (and thus the Tangent Plane) is the image set of

$$\mathbf{F}(\mathbf{q}) + J\mathbf{F}(\mathbf{q})(\mathbf{x} - \mathbf{q}) = \begin{pmatrix} 2\\1\\-1 \end{pmatrix} + \begin{pmatrix} 2&2\\1&1\\2&-3 \end{pmatrix} \begin{pmatrix} x-1\\y-1 \end{pmatrix}$$
$$= \begin{pmatrix} 2x+2y-2\\x+y-1\\2x-3y \end{pmatrix},$$

for $\mathbf{x} \in \mathbb{R}^2$.

ii. the Tangent Plane is $\{\mathbf{x} \in \mathbb{R}^3 : z = y\}$. iii. the Tangent Plane is $\{\mathbf{x} \in \mathbb{R}^3 : x = y\}$.

10 Find parametric equation for the Tangent Plane passing through the point $\mathbf{F}(\mathbf{q})$ on the parametric surface given by $\mathbf{F}(\mathbf{x}) = (yz, xz, xy, xyz)^T$, for $\mathbf{x} = (x, y, z)^T$ at $\mathbf{q} = (1, -1, 2)^T$.

Solution The Jacobian matrix is

$$J\mathbf{F}(\mathbf{x}) = \begin{pmatrix} 0 & z & y \\ z & 0 & x \\ y & x & 0 \\ yz & xz & xy \end{pmatrix} \quad \text{so} \quad J\mathbf{F}(\mathbf{q}) = \begin{pmatrix} 0 & 2 & -1 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \\ -2 & 2 & -1 \end{pmatrix}.$$

The Jacobian matrix is of full rank so the Tangent Plane is the image of Best Affine Approximation;

$$\mathbf{F}(\mathbf{q}) + J\mathbf{F}(\mathbf{q})(\mathbf{x} - \mathbf{q}) = \begin{pmatrix} -2\\2\\-1\\-2 \end{pmatrix} + \begin{pmatrix} 0 & 2 & -1\\2 & 0 & 1\\-1 & 1 & 0\\-2 & 2 & -1 \end{pmatrix} \begin{pmatrix} x - 1\\y + 1\\z - 2 \end{pmatrix}$$
$$= \begin{pmatrix} 2y - z + 2\\2x + z - 2\\-x + y + 1\\-2x + 2y - z + 4 \end{pmatrix}.$$

11. Find the tangent planes at the points $\mathbf{p}_1 = (1/\sqrt{2}, 1/4, 1/4)$ and $\mathbf{p}_2 = (\sqrt{3}/2, 0, 1/4)$ on the ellipsoid $x^2 + 4y^2 + 4z^2 = 1$.

Find the line of intersection of these two planes.

Solution Let $f(\mathbf{x}) = x^2 + 4y^2 + 4z^2 - 1$ so the ellipsoid is the level set $f^{-1}(0)$. The Jacobian matrix is $Jf(\mathbf{x}) = (2x, 8y, 8z)$. The Tangent Plane to $f^{-1}(0)$ at \mathbf{p}_1 is

$$0 = Jf(\mathbf{p}_1)(\mathbf{x} - \mathbf{p}_1) = 2\frac{1}{\sqrt{2}}\left(x - \frac{1}{\sqrt{2}}\right) + 8\frac{1}{4}\left(y - \frac{1}{4}\right) + 8\frac{1}{4}\left(z - \frac{1}{4}\right)$$
$$= \sqrt{2}x + 2y + 2z - 2.$$

That is $\sqrt{2x} + 2y + 2z = 2$.

Similarly the plane at \mathbf{p}_2 is $\sqrt{3}x + 2z = 2$.

Solving for y and z and the line of intersection can be given parametrically as

$$\left\{ \left(t, \frac{(\sqrt{3}-\sqrt{2})}{2}t, 1-t\frac{\sqrt{3}}{2}\right)^T : t \in \mathbb{R} \right\}.$$

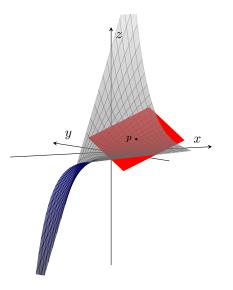
12. i. Find the Tangent Plane to the surface $z = xe^y$ at the point $\mathbf{p} = (1,0,1)^T$ on the surface.

ii. The surfaces $x^2 + y^2 - z^2 = 1$ and x + y + z = 5 intersect in a curve Γ . Find the equation in parametric form of the tangent line to Γ at the point $(1, 2, 2)^T$. **Solution** i. Let $f(\mathbf{x}) = xe^y - z$, where $\mathbf{x} = (x, y, z)^T$, so the surface is the level set $f^{-1}(0)$. The Jacobian matrix is $Jf(\mathbf{x}) = (e^y, xe^y, -1)$ so $Jf(\mathbf{p}) = (1, 1, -1)$. The Tangent plane is $Jf(\mathbf{p})(\mathbf{x} - \mathbf{p}) = 0$, that is $\mathbf{x} \in \mathbb{R}^3$ such that

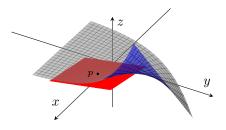
$$0 = (1, 1, -1) \begin{pmatrix} x - 1 \\ y - 0 \\ z - 1 \end{pmatrix} = x + y - z,$$

i.e. x + y - z = 0.

Just in case you cannot see the Tangent Plane, here shown under the surface:



I've now changed my viewpoint around by 90° and up a little:



(b) Let $\mathbf{F}(\mathbf{x}) = (x^2 + y^2 - z^2 - 1, x + y + z - 5)^T$. Then Γ is the level set $\mathbf{F}^{-1}(\mathbf{0})$. The Jacobian matrix is

$$J\mathbf{F}(\mathbf{x}) = \begin{pmatrix} 2x & 2y & -2z \\ 1 & 1 & 1 \end{pmatrix} \text{ so } J\mathbf{F}(\mathbf{p}) = \begin{pmatrix} 2 & 4 & -4 \\ 1 & 1 & 1 \end{pmatrix},$$

where $\mathbf{p} = (1, 2, 2)^T$. The Tangent plane to the level set at \mathbf{p} is

$$\left\{\mathbf{x} \in \mathbb{R}^3 : J\mathbf{F}(\mathbf{p})(\mathbf{x} - \mathbf{p}) = 0\right\} = \left\{\mathbf{x} \in \mathbb{R}^3 : \begin{pmatrix} 2 & 4 & -4 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x - 1 \\ y - 2 \\ z - 2 \end{pmatrix} = 0\right\}$$

Thus we get the Tangent plane (here a line) as a level set

$$\begin{array}{rcl} x+2y-2z &=& 1\\ x+y+z &=& 5. \end{array}$$

To give the answer in parametric form solve for y and z. Perhaps $2 \times$ second equation add to first so 3x + 4y = 11, i.e. y = (11 - 3x)/4. In the second equation for

$$z = 5 - x - y = (20 - 4x - 11 + 3x)/4 = (9 - x)/4.$$

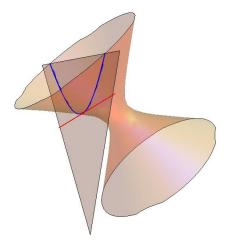
Hence a parametric form for the Tangent line is

$$\left\{ \left(x, \frac{11-3x}{4}, \frac{9-x}{4}\right)^T : x \in \mathbb{R} \right\}.$$

You might not like fractions, but a change of variables, x = 1 + 4t, gives

$$\left\{ (1+4t, 2-3t, 2-t)^T : t \in \mathbb{R} \right\}.$$

Hopefully you can see in the following figure the blue line of intersection of the plane x + y + z = 5 with the hyperboloid $x^2 + y^2 - z^2 = 1$, along with the red tangent line:



13. i. Consider the surface $S = \{(x, y, z)^T \in \mathbb{R}^3 : xy = z\}$. Let $\mathbf{p} = (A, B, C)^T$ be a generic point of S. Find the Tangent Plane at \mathbf{p} .

ii. Show that the intersection of the Tangent Plane with S consists of two straight lines.

Solution i. If $f(\mathbf{x}) = xy - z$ then $S = f^{-1}(0)$. The Tangent plane for a level set at \mathbf{p} is the set of \mathbf{x} such that $Jf(\mathbf{p})(\mathbf{x} - \mathbf{p}) = 0$. In this case $Jf(\mathbf{p}) = (y, x, -1)_{\mathbf{x}=\mathbf{p}} = (B, A, -1)$. So the plane is the $\mathbf{x} \in \mathbb{R}^3$ such that

$$0 = Jf(\mathbf{p})(\mathbf{x} - \mathbf{p}) = (B, A, -1) \begin{pmatrix} x - A \\ y - B \\ z - C \end{pmatrix} = Bx + Ay - z - 2AB + C.$$

That is

Bx + Ay - z = 2AB - C = AB,

since AB = C because $(A, B, C)^T \in S$.

ii. The intersection of the Tangent plane with S consists of $(x, y, z)^T : Bx + Ay - z = AB$ and xy = z. Combine as Bx + Ay - xy = AB, which rearranges as (x - A)(y - B) = 0. Thus we have either x = A or y = B.

If x = A then the equation of the surface becomes Ay = z and we get the straight line $\{(A, t, At)^T : t \in \mathbb{R}\}$.

If y = B we get the straight line $\{(t, B, Bt)^T : t \in \mathbb{R}\}.$

Does this help as an illustration?

